

ELP Series AC Servo

Quick Start Guide

Only for ELP-D*** and ELP-RS*** V1.0.0

www.leadshine.com tech@leadshine.com

This guide is only for ELP-D*** and ELP-RS*** version, ELP-EC*** with EtherCAT communication isn't included in this guide, refer to *User Manual of ELP-EC**** for more details .

Main steps to tune ELP servo :

- Step 1 : Unpacking check
- Step 2 : Wiring
- Step 3 : Run test
- Step 4 : Basic setting
 - 1) <u>Select the right control working mode</u>
 - 2) Select the right running mode
 - 3) <u>Tune inertia ratio with load.</u>
 - 4) <u>Make servo on signal ready</u>
 - 5) <u>Tune the stiffness.</u>
 - 6) Set the polarity and electronic ratio
 - 7) <u>Tune command filter if needed.</u>
- Step 5 : Save the value of parameters by panel
- <u>Step 6 : Trouble shooting</u>

Step 1 : Unpacking check

A complete and workable AC servo system should include the following parts:

- 1) Matched Servo drive and Servo motor
- 2) A power cable, connect servo drive to servo motor
- 3) A feedback encoder cable, connect servo drive to servo motor
- 4) A power cable for brake if needed, connect the 24Vdc power to motor with brake
- 5) A tuning USB cable : Cable-USB1M5 , connect the Port CN3 to PC for communication.
- 6) 44-PIN connector (For I/O connections, Port CN2)

Step 2 : Wiring

Quio	ck Start For EL	P AC Servo		www.leadshine.com	tech@leadshine.com			
	Port	Pin	Signa	al	Detail			
	V1	L1	For 1 phase	e 220V	E 1 2201			
	XT	L2	For 1 phase	For 1 phase 220V		-15% , 50/00HZ		
	Notes	$\begin{array}{l} \diamondsuit \\ \text{Isolation} \\ \diamondsuit \\ \text{Do not c} \\ \diamondsuit \\ \text{In case c} \end{array}$	transformer can be used to onnect 380VAC power su of serious interference, it is	for power supply; pply to ELP drive , o s recommended to use	herwise drive will be damaged seriously; e noise filter for power supply;			
	Port	Pin	Signa	al	Detail			
	X1	P +	DC bus + te	erminal	 Driver DC bus + terminal External regenerative resistor P terminal 			
		Br	External regenerative	resistor terminal	External regenerative resistor terminal			
	Port	Pin	Signal		Detail			
		U	U					
	V1	V	V	3 phases motor powe	er input			
	XI	W	W					
		PE	PE	Frame ground				
	Notes	Conne	ect the drive to the grou	nd end (PE) of the	motor and connect it to the	earth		

Typical wiring of ELP-D***Z

1) Switch Input Interface

2) Pulse Input Interface

Notice: COM_SI is used for input signal, while COM_SO is used for output signal .

If the driver is enabled with internal signal, no need to connect Pin1 & Pin2 .

Pr4.00=83 for internal enable. Pr4.00=3 for external enable.

If the voltage of pulse signal is 5V, please connect Pin3. Pin4. Pin5. Pin6.

If the voltage of signal is 24V, please connect Pin16. Pin4. Pin17. Pin6.

(Pin16、Pin4、Pin117、Pin6 of CN1 Port)

Differential 5V Pulse Signal (Pin3、Pin4、Pin5、Pin6 of CN1 Port)

3) Switch Output Interface

Using reversed freewheel diode for digital output port (only for motor with brake)

The relay is widely used for logic control. Usually it is connected directly to IO port of driver if the motor is with brake. Connect a freewheel diode in anti-parallel to avoid interference of high voltage which comes from the moment of power on or power off.

Notice: Don't connect the diode in wrong polarity, otherwise driver will be damaged.

Step 3 : Run Test

Use "run testing" function to run the motor for basic setting . Make sure the shaft of motor is free before running , and also release the brake firstly if motor is with brake.

1 . Set parameters for run testing:

Pay attention to Pr0.03 (Stiffness) and Pr0.04 (Inertia ratio) which are strongly for better performance

2. Run testing guidance

- Click "Servo enable".
- Click "CCW" to make motor run
- Click "Position 1" to save the testing position limit 1.
- Click "CW" to make motor run in CW direction, click "Position 2" to save the testing position limit 2.
- Click "Run" to start Testing progress.

3 . During the **Run Testing** progress , the interface of "wave show" can be used to check the real-time performance.

Position				
Setting		1000		
Pr6.04	Jog Speed	1000	rpm	<< Expand
Pr6.25 Acceleration of	trial running	200	ms/1000rpm	
Pr0.04	Inertia ratio	250		Download
Servo Enable	ON			
	Enable		-	
Current Resition 56				
Current Position 50.3	5990 F			
ccw	CW			
Position 1	Position 2]		
56.9989	56.9989			
Pr6.21 Waiting time of	100 ms			
trial running	_	Run		
Pr6.22 Cycling times of trial running	2			

Step 4 : Basic setting

1) Control mode setting (Pr0.01)

	Dr0 01*	Co	Control Mode Setup			Range	unit	default	Rel contre	ated ol mode	
	P10.01	CU		0 -10	-	0	Р	S	Т		
	Set using o	contr	ol mode								
	Catura value		Content		When you set up the combination mode of 3.4.5, you can						
	Setup va	lue	1st mode	2nd mode	select either the 1st or the 2nd with control mode					е	
	0 1 2 6		Position	-	switching input(C-MODE).						
			Velocity	-						- i - i	
			Torque	-	When C-WODE is open, the 1st mode will be selected					cted.	Ч
			Pr-Mode		When C-MODE is shorted, the 2nd mode will be				viii be s	selecte	u.

2) Mode of real-time auto-gain tuning setting (Pr0.02)

This helps to set the servo working in right running mode .

For **Manual** mode(Pr0.02=0), Kp, Ki and other parameters can be set manually. Pr003 is unavailable now .

About how to tune position loop, Ki can be adjusted to a very small value in advance and hold it constantly, then enlarge the value of Kp parameter slowly until system oscillation occurs, then enlarge the value of Vi parameter slowly until system oscillation occurs.

www.leadshine.com tech@leadshine.com

For **Standard** mode(Pr0.02=1), it is usually for interpolation movement. It is unavailable to modify the value of Pr1.00-1.14, just need to change the value of Pr0.03, then all values of Pr1.00-1.14 will be changed accordingly.

For **Positioning** mode(Pr0.02=2), it is usually for point to point movement. It is unavailable to modify the value of Pr1.00-1.14, just change the value of Pr0.03, then all values of Pr1.00-1.14 will be changed

Position				
Setting				
Pr6.04 Jog Speed	400	rpm	Fold >>	
Pr6.25 Acceleration of trial running		Pr0.02 Real-time auto-gain	2:Position -	
Pr0.04 Inertia ratio		Pr0.03 Real-time automatic rigidity adjustment	0:Manual 1:Standard 2:Position	
Servo Enable		Pr0.06 Command pulse rotational direction setup	0	
Invalid External Enable		Pr3.03 Speed command reversal input	0	
Current Position 0.0000 r		Pr1.00 1st position loop gain	320 0.1/s	
CCW CW		Pr1.01 1st velocity loop gain	180 0.1Hz	
Position 1 Position 2]	Pr1.02 1st time constant of velocity loop integration	310 0.1ms	
0.0000 0.0000	J	Pr1.04 1st time constant of torque filter	126 0.01ms	
		Pr1.05 2nd position loop gain	380 0.1/s	
Pr6.21 Waiting time of 100 ms trial running		Pr1.06 2nd velocity loop gain	180 0.1Hz	
Pr6.22 Cycling times of 5 trial running		Pr1.07 2nd time constant of velocity loop integration	10000 0.1ms	
		Pr1.09 2nd time constant of torque filter	126 0.01ms	
		Pr1.10 Velocity feed forward gain	300 0.1%	
		Pr1.12 Torque feed forward gain	0 0.01%	
		Pr1.15 Control mode switching	10	

3) <u>Performance adjustment—Tuning the inertia ratio(Pr0.04)</u>

- It is important to find the ratio of inertia for one axis, in order to get best performance before setting other parameters (for example, setting PID of position loop or velocity loop).
- Connect motor with load before testing one axis.
- Make sure the axis can be moved in safe distance, any interference should be avoided to ensure safety

Inertia ratio identification

Pre-conditions:

- 1. Servo disable.
- 2. Positive limit and negative limit invalid

Steps:

 Set the Jog speed Pr6.04 at 300~1000rpm is recommend, Acc Pr6.25 at 50~100 ms/1000rpm is recommend.
 Set the Default Inertia Ratio.

Download these settings, then make Servo Enable.

- Click "CCW" to make motor run, click "Position 1" to save the position limit 1 Click "CW" to make motor run to CW direction, Click "Position 2" to save the position limit 2 Click "Run" to start Inertia ratio dentification.
- Click "Write" to save the Inertia ratio identification result into NVM after finishing all steps above.

nertia Ratio Identification					×
STEP-1					
Pr6.04 Jog Speed	400	rpm		Download	
Pr6.25 Acceleration of trial running	200	ms/100	0rpm		
Default Inertia Ratio	250	250		Servo Enable	
				Invalid External Enable	
STEP-2		62.9487	Current 6 CCW Position 1	2.9497 r CW Position 2 -0.0033	
Pr6.21 Waiting time of trial running	50	ms	Run		
Pr6.22 Cycling times of trial running	3				
STEP-3 Inertia Ratio	0		Write		

4) Make servo_on of drive ready (Pr400)

This helps to set the servo drive with servo_on ready .

Notice: COM_SI is used for input signal, while COM_SO is used for output signal .

If the driver is enabled with internal signal, no need to connect Pin1 & Pin2.

Pr4.00=83 for internal enable. Pr4.00=3 for external enable.

5) Performance adjustment—Stiffness adjustment(Pr0.03)

The definition of Pr0.03

Here below is a simple example showing how to tune Pr003 :

The following figure showing Pr0.02=2, Pr0.03=70, the position error (curve in red) is unacceptable! Keep decreasing value of Pr0.03, then the position error become smaller and smaller.

Keep decreasing the value pf Pr0.03, the position loop gain Kp become bigger and bigger, the integration time constant Vi become smaller and smaller, the position error become smaller , close to zero.

The noise of motor occurs and alarm occurs if the position loop gain becomes bigger, noise need to be avoided. Finally, set Pr0.03=62, the basic setting for position loop is finished in Position mode.

6) Set the polarity and electronic ratio

1) Confirm pulse polarity Pr0.06, command input mode Pr0.07

2) Modify Pr0.08 and set a suitable electronic gear ratio, Pr0.09 and Pr0.10 are needed to be tuned if needed

Parameters	Range	Details		
Pr0.06(Pulse polarity setting)	0/1	Set Pr0.06 to change the rotation direction.		
Pr0.07(Pulse input model)	0/1/2/3	Command Pulse Input Mode, set Pr0.07 according to controller signal		
Pr0.08 (command pulse per motor rotation)	0-8388608	 1) If Pr008≠0, the motor actual turns = pulse number / Pr008 2) If Pr008=0, Pr0.09 1st numerator of electronic gear and Pr0.10 Denominator of electronic gear become valid. 		
Pr0.09 (numerator of electronic gear)	0-8388608	If Pr008=0, Pr0.09 1st numerator of electronic gear and Pr0.10		
Pr0.10 (denominator of electronic gear)	0-8388608	Denominator of electronic gear become valid.		

Remark:

- 1. Default for Pr0.08 pulse per rev is 10000 .
- 2. Electronic gear ratio can be also set by Pr0.09(numerator) and Pr0.10(denominator), Pr0.08 must be set as 0 before that.
- 3. Input pulse frequency which is higher than 500K can not be identified by driver. Assuming that 10000 ppr, that means corresponding command bandwidth of 3000rpm can reach to 500k. If motor run above 3000 rpm, the pulse per rev must be lower than 10000.

7) Position command filter

To make the positional command divided or multiplied by the electronic gear smooth, set the command filter.

8) Tuning the dynamic tracking performance (Pr000) (optional)

Notes: Pr000 is only available in position mode .

Model Following Control (MFC)

- MFC is used to enhance the performance of dynamic tracking for input command, make positioning faster, cut down the tracking error, run more smoothly.
- There are two different way to use it, one is set Pr0.00 =1, the other is set Pr0.00 as another integer which is more than 10.
- It is very useful for multi-axis synchronous movement and interpolation, the performance will be better if the value of Pr000 for each axis is the same.

Mada loop gain		Range	unit	default	Related control mode		ol mode		
	Sue loop gain	0 -32767	0.1Hz	0	Р				
ban	dwidth of MFC , it is sin	nilar to the r	esponse	bandwidth	ı				
lue	Meaning								
	Disable the function.								
1 Enable the function		set the bandwidth automatically,							
	recommended for most								
	Forbidden and reserved .								
11-20000 Set the bandwidth man			z - 2000	Hz					
	Mo band lue	Mode loop gain bandwidth of MFC , it is sin lue Meaning Disable the function. Enable the function , se recommended for most Forbidden and reserved 00 Set the bandwidth man	Range 0 -32767 bandwidth of MFC , it is similar to the r lue Meaning Disable the function. Enable the function , set the bandwrecommended for most application Forbidden and reserved. 00 Set the bandwidth manually , 1.1H	Mode loop gainRangeunit $0-32767$ $0.1Hz$ bardwidth of MFC , it is similar to the responselueMeaningDisable the function.Enable the function , set the bandwidth autor recommended for most application .Forbidden and reserved .00Set the bandwidth manually , $1.1Hz - 2000$	Mode loop gainRangeunitdefault 0.32767 $0.1Hz$ 0 bandwidth of MFC, it is similar to the response bandwidthlueMeaningDisable the function.Enable the function, set the bandwidth automatically recommended for most application.Forbidden and reserved.00Set the bandwidth manually, $1.1Hz - 200VHz$	Rangeunitdefault $0 - 32767$ $0.1Hz$ 0 P bandwidth of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MFC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandwidthImage: Second state of MEC, it is similar to the response bandw	RangeunitdefaultRelated control0-327670.1Hz0Pbandwidth of MFC , it is similar to the response bandwidthImage: Image: Im		

The steps to use this function :

- a. Choose the right control mode : Pr0.01 = 0
- b. Set up Pr0.02=1 for interpolation movement
- c. Set up the inertia ratio : Pr0.04
- d. Set up the rigidity : Pr0.03
- e. Set up the Pr0.00 :
 - 1) If no multi-axis synchronous movement, set Pr0.00 as 1 or more than 10;
 - 2) If multi-axis synchronous movement needed, set Pr0.00 as the same for all the axes.
 - 3) If Pr0.00 is more than 10, start with 100, or 150, 200, 250,

Caution:

- 1. Set up the right control mode , the correct inertia of ratio and rigidity firstly .
- 2. Don't change the value of Pr0.00 when the motor is running , otherwise vibration occurs .
- 3. Set up a small value from the beginning if using it in manual mode , smaller value means running more smooth and steady , while bigger one means faster positioning .

Step 5 : Save the value of parameters with panel

1) The panel will display for about one second at first , after power on. If no abnormal alarm occurs, the panel will display the value of initial parameter ; otherwise, abnormal alarm code will display. 2) Press M key to switch one mode to another mode :

data monitor mode \rightarrow parameter setting mode \rightarrow auxiliary function mode \rightarrow EEPROM written mode. 3) If new abnormal alarm occurs, alarm code will display immediately, no matter what the current mode is, press M key to switch to the other mode.

4) In data monitor mode, press \blacktriangle or ∇ to select the type of monitor parameter; Press ENT to enter the parameter

5) In parameter setting mode, press \blacktriangleleft to select current editing bit of parameter No, press \blacktriangle or \triangledown to change current editing bit of parameters No. Press ENT key to enter the parameter setting mode of corresponding parameters No. Press \blacktriangleleft to select current bit of parameter value when editing it, press \blacktriangle or \triangledown to change the value of the bit. Press ENT to save it and switch to the interface of parameter No.

Saving parameter

Operation procedure:

1. press **M** to select EEPROM written mode, display "

2. Press ENT to enter into written mode operation:

3. Press and hold ▲, display LED from" ¹ Here are to" Here are to", then it become" ¹ Here are are to " finally it become", indicate that EEPROM written operation have been began; 4. Here are a show that the written is unsuccessful while while a show that the written is

successful; Follow steps 3 and 4 to repeat the operation again; the drive may be damaged if repetition of several times still fail. (Contact the seller about repairing if drive is damaged)

5. The drive need to be power off and restart again to make sure written of EEPROM successfully .

NOTE: Don't turn off the power if EEPROM writing operation goes on, otherwise it may cause a writing wrong data; If this happens, please reset all the parameters , then do EEPROM writing operation again.

Step 6 : Trouble shooting

Protection function is activated when an error occurs, the driver will stop the rotation of servo motor, and the front panel will automatically display the corresponding fault error code. The history of the error can be viewed on data monitoring mode. error logging submenu displays like:"d12Er".

For alarm can be cleared:

1. Use auxiliary function "AF_ACL"

- a. Press M to select auxiliary function
- b. Press SET to enter into "AF_ACL"
- c. Press and hold \blacktriangleleft to clear the alarm

2. Set IO input function as Alarm clear input " (A-CLR)", refer to switch input interface connection to clear the alarm

For alarm can not be cleared:

Restart the power-supply to clear the alarm.

Event	Description	Likely Cause	Recommended Actions					
		• Short of driver output wire	Check wiring of motor/drive					
Er0E0	Over current	 Abnormal wiring of motor 	 Adjust motor wiring sequence 					
Er0E1	over current	 Short circuit of IPM 	• replace the driver with a new one					
		 Abnormal setting of parameter 	 Adjust parameter to proper range 					
		 Load is too heavy; 	 Decrease load, adjust limit parameter 					
Er 100	motor over-load	• wiring error of motor ;	 Check wiring or replace a new encoder/motor 					
		• Brake not released.	Release the brake					
Er 101	Driver over lead	wiring error of motor power	Check U.V.W wiring if error occurs or not, if line					
LI 101	Driver Over-Ioau	line;	breaks or not					
Er 150	Encoder line	• Encoder line disconnected ;	 Reconnect encoder wiring. 					
Er 152	breaked	 Encoder damaged. 	• replace the motor with a new one					
		• Unreasonable set of position	• Enlarge the value of Pr0.14					
Er 180	position error over-large error	error parameter;	• Enlarge the value of Pr1.00, Pr1.05					
LI 160		• Gain set is too small ;	• Increase acceleration/ deceleration time decrease					
		 load is too large 	speed, decrease load					
Er 100	motor vibration	• Current vibration ;	• Cut down the value of Pr0.03 Pr0.04					
LI 170		 Current loop is too strong 	Cut down the value of 110.03. 110.04					
		Motor speed has exceeded the	Adjust the value of input speed command, enlarge the					
Er 1A0	over-speed	first speed limit ($PA = 321$)	value PA_321 value, modify command pulse input					
		mst speed mint (ITX_521)	frequency and division frequency coefficient,					
	speed out of	 Control maladjustment 	 Anti-interference treatment or change motor 					
Er 1A1	speed out of	 Encoder error 	• The special assessment of practical application, set 0					
	control	 Special application 	to 4 for PA137 to shield ERR1A1 alarm.					
Note : For other alarms, Please refer to the User manual.								